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INTRODUCTION

In order to enable an industrial machine with primitive computational abil-

ity to use complicated or difficult to compute functional relationships

repeatedly, efficiently, and accurately, it is necessary to supply the machine

with these functional relationships as sets of data in tabular form. It is

assumed that the machine can deal with continuous, piecewise linear functions

(linear splnes). A graphics tube is a good example. Such a tube can draw only

straight lines, but drawing many short, connected line segments can represent an

arbitrary curve well. In order to represent these functions most accurately, a

nonuniform mesh must be used. Finding such a mesh is, in principle, a very dif-

ficult nonlinear optimization problem, but C. de Boor (refs 1-3) advocated a

general method by which the mesh can be found quickly, easily, robustly (and

approximately) without any recourse to optimization methods! We present herein

a robust addition to de Boor's standard method which improves its accuracy

without increasing the essential complexity of his algorithm.

INTERPOLATORY ERROR

Let I be the linear interpolant of function f on a subinterval of length h,

The error is given by

f(t) = 1(t) + e(t) (W - 4 t 4 9 + )

22

Expand e in a Taylor series around the midpoint () of the subinterval

e(t) = I • )
i=O

Applying the two boundary conditions

- ) 0 = e(p +

ultimately yields

I



e 4* + a) f8  7 ( 2i (t 2i -1)

2 =1(2i). 2

00 (2i+1)

(2i.1)! 2

Taking the first two terms of each sum

e(-- + h2t=I
2 2

+ Lh 3t(tz-l)

+ f 1h'(t4-1)

2*3* h't(t4-1) + 0(h6)

Letting

(2+i)
.i= f(j±) /f " 0A)

one has

e(!+ u) hz(t 2-I){1JhI h~aI
2 2 23 24.3

+--------h 3 t(t2+1l + 0(h4fl ="l h2 (t2-1)(I+S)

where

S = aiht + a2h2(t2.1) + a3h
3t(tZ+1) + 0(h')

and

91 02 P3
2 82 a 2  24- 3  -4 25*3*5

INTERPOLATORY ERROR NORM

The local L n norm of the error on a subinterval of length h is defined by

lIeIIfl,h = (f u I/ je(t) I ndt)l1/n

2



where I ( n < ® and n is an integer. For n = , we have the maximum error.

Now,

leln h fIe ht+ Ind
Ilelln,h = 2 e( -  

i) j ndt

but

e( - + 4) = 2s h -)(1+S)

So if we let h be sufficiently small so that IS I < I on (-1,1), we have

Ilgn i ,( )Inh2n+1l I)n negnh = ------ I 1 -1 (1-t2) (+S) ndt

2 n1

Since only the even terms of (1+S) n contribute to the integral, we have

n I ,, (1) I nh2n+l ]

Ie ln h -------------- f (1-te)nEv(1+S)ndt
23n0

where Ev(I+S)n denotes the even terms of (1+S)n.

Hence,

Ev(1+S) n = 1 + (n )a2h2(1+t2) + (n)a'h2t2 + O(hA)

Letting
1

(1-t)'Ev(+S)2dt

0 1
[ ~ ~~~n(n-1) a2Z Oh)d

f (1l-f)n(1+h 2(na2 (1+t2) 2-a~ 2  0h)d

In,o + nh2(a2(In,o+In,1 ) + ni alin,1) + O(h')

In,1, n-1 n ,1
In,o(l+nh2 (a2 (1 + +2 2 1 al -- ) + 0(h))

Using integration-by-parts on In, i and solving the resulting recursion ulti-

mately yields

22n n!(2i)!(i+n)!
i!(2i 2n+ )!



from which we conclude that

22n (n!)2

22n+In!(n+1)!

ahd

In,o 2n+3

Hence,

I
f (1-t2)nEv(1+S)ndt
0

22n (n!)2  2(n+1) n-I 2
= z ;TTT- (I+nha(-2n;3- a2 + 2T2;35 a,) + 0(h'))

and

n Lf"() Lnh2n+ (n!)2 2(n+2) n-I a)=ef~ ......... (1+nh2(- - a2~(h)
e 2n(2n+1)! -n;3 a 2(2n+3)

or

2+1/n 2(n2 -llelin, h = K f"() I h (+h( a 2 + 2(2n+3) a1 )2n+3 ~ ~ ~ O1Tal (hl))

where

k 1/n

2 (2n~l)!"

Using Stirling's approximation to the factorial, it is easy to show that

1
lim k = -

8n--m

Recalling that

01 P2
a = 3 and a2 =2-3

we finally have

21n h2 n+2 n-1

IleIIn,h K if"(p) I h2 1 /(1 +  (h n P2 + 5T2;5 PI) + 0(h'))

24h-n+Ow2

as h-0, where

4



2 (2n+1).

and

(2+i)
Pi = f(A.) /f"(W.)

NORM OF ARBITRARY FUNCTION

The local Lpnorm of arbitrary function * over a subinterval of length h is

defined as

=111~ (f P I/ Pd(t) I
P- h/ 2

where p >0, finite arnd real. In this context, we allow p < 1 even though

Minkowski's triangle inequality holds only for p ) 1.

Expand 1) in a Taylor series around the midpoint of the subinterval

i=0O
where

(i)
0i =-O /0w

Now,

11HP, h f (bht+ d

but

(O +) W 0= IS

where

S = aiti

and

Pi h1

Hence, letting h be sufficiently small so that IS I<I on (-1,1), we have

11PfP (1+S)Pdt = h 10g IPf Ev(1+S)Pdt

h I (~u) Pf5



but

S = ait + a2 t
2 + a3 t

3 + 0(h')
hence

Ev(1+S) p = I + (1)a2 tz + (2 )altz + 0(h4)

We therefore have

p p 1 p-1
=10up,h h I((w) I f 1 + pta(a2 + j- al) - 0(h4)dt

= h I () P(I + P (p-1)p) + 0(h 4 ))24 (2+(-

or

IIbllp,h = h 1 I ( ) I (1 + 2 (P2 +  (p-1)pl) + 0(h'))

as h--O.

STANDARD APPROXIMATION TO leln,h

Recalling that

h'ipllf"Iph = I f"(W) I (1 +  (P2 + (p-1)p2) + 0(h'))

and
ha n+2 n-140(h~

11eflnh = kh 2 + I/n (P I (, -- (-+ n- p 2+ (h24 2n;3 P2 + 3(2n+3) I

we multily the first equation by kh2 + 1/n and subtract from the second, getting

lIelln,h = kh2+1/n-1/PllfuIp,h

+ kh 2 +1/n If() Ih 2  n+1 7n+8
h+in 52n+3 2 + (6n+ P)Pz) + 0(h'))

If we now let p = we have

Relln, h = kIf"Un/(2n+1),h

4+1nn1 +n2+14n+8 akh4/n If" (4) h ( 4 2n P2 -1p) + 0(h 2 ))

kllf"1p,h + kh 4+ 1 /n I f"(4) 1(1,- ap2 + b 2 ) + 0(h 2 ))
24 1

=ktf"I1n/(2n1),h + 0(h 
4+1/n

6



For n = 1,2, and o, respectively, we have

Ileill,h = I Uf"1l1/3,h + 0(h6)

1
1le112, h  = if"l12/5, h  + 0(h 

9 / 2 )

Ilell,,,h = I Iif"111/2, h + 0(h' )

STANDARD ERROR EQUIDISTRIBUTION FOR ANY BANACH NORM

In this section, we justify the standard method of error equidistribution

with respect to any Banach norm. The global Ln norm of the error over interval

(a,o) is
b

11elln  = (f I e(t) I ndt)l/n
a

Hence, for a mesh a = x1 < x2 < ... < XN b

n N-1 fxi I  
N-1 n)

hIe n -- Z / ei(,.) ndt = ,le(n, hi
i=1 Xi i=1

Let single bars around the error denote the standard approximation to the

error norm and analogously define

N-ieIn I Ienen =j=1 n,h J

but
xj+'I n~hi = kllf,,Ip. = k(fx I f"(t) It) /

where

n
P=2n+1

Hence, letting

ip,hj = Ixj  I f(t) I Pdt
3 xi

we have

len= kn N I
n j=1  p,hj

7



We will refer to the integrals Iph as the standard or de Boor integrals.

It follows trivially, using Leibnitz's rule, that

- e n=0 1 < i < N

axi n

implies that

Ip,hi-j = Ip'ni I < i < N

Hence, the conditlon Ip,h = constant determines the mesh which minimizes the

standard global approximation to nelln.

For a linear spline approximation to f", it is a fairly simple (see

COMPUTATION) matter to find the mesh for which the de Boor integrals are

constant.

CONVERGENCE OF STANDARD METHOD

Recall that

ilelln,h = kllf" p,h +k f" () +b ) + O(h6+1/n)

Letting

F :af"( )fK +

we nave the following one term approximation to the difference between llellnj,

and I e nh

-
kFh4+1/n

n,h I e n,h

but

felln,h = kh2+1 ! f"(4)

Therefore, we also have

hell nh - Ie In,h Fh2

lell 241 f" I) I

but also

llf"lI h/ f"(.L) I

p,h

8



hence, 11 f 1 11 P1/plf"UI' h P " IE h P _2 _

h , = F TR( )= I f"() I

In addition, for the correct mesh

Ip,h=

hence,

IE
h ------- 1- --(N-i)I f"(M) I

and therefore,
Uel nh e nh F1

---------------------- ------------ ---11ell n, h  241 f"'( ) 1 2+2P(N-1)2

This tells us that the relative difference between Ilelln,h and le I n,h is 0(1)

as N-m, which means that tne standard method works better and better

Itelln, h will be more nearly constant) as N gets larger and larger, This is all

true, however, with the proviso that

F

(,f"u) I2+2, p

is bounded throughout the region of interest, It stands to reason, therefore,

that the standard method will perform worst where f" is not bounded away from

zero.

IMPROVED APPROXIMATION TO Ieln,h

Recall that

IeI! = ki f'(M) I h2 +i/n( + h( ; n. +
n1e h 2"p h21ni4 2n+3 2 n- p2n+ ) + 0(hl))
nand-n- 2+ T-

and

lf"l h : h/1 f"(11) I (I + P2  + 0 O(h'))

Multiplying h by r in the second equation, we have

r-I/qllf"1  h = h111 f"(A) I(I + '(r2 + rZ(q-1)p2) + 0(hl))
q,rhN



Multiplying this equation by khQ gives us

krl/hQ~fllfI = f"(g) 1(1 + '(r 2 + r2(q-l)pl) + 0(h'))

Now, in order to make this equation look as much like the very first one as

possible, we set

r2 n2 r2(q-1)=

and

q n

Solving for r, q, and Q, we have

r n (+2_)1/2
2n-+3

4n+5

q-3n+6

and

Q 5nz+8n.5

A simple subtraction then gives us an improved approximation to lell n~

Hetnh= kr /hjf.jqr O(h 6+1/nl

where before, we had

11ell n,h = klf"ll1 ph + O(h 4+1/n l ~ ~ +/

It must be mentioned however, that although this improved approximation is

asymptotically more efficient, no such approximation can be uniformly superior

in all cases. Bearing this in mind, we dispense with approximations on all

subintervals not having f" bounded away from zero and instead use the exact

error

e,(x) = f f tf"(u)dudt- ------- f if f"(u)dudt

10



COMPUTATION

In actual computation, we assume the existence of a piecewise linear

approximation to If" 1. The mesh over which this function is defined is

referred to as the "original" mesh. In order to deal with the standard and

improved asymptotic integral approximations to the local error norm, we will

need to deal with integrals of the form

c+2
L = f X(t)m/ndt

c

where A is a nonnegative linear function with slope s

X(t) = X(c) + s(t-c)

A(t) ) 0 for c 4 t 4 c + f

and where m and n are arbitrary positive integers,

In the following, let

= X(c)
/ n

and
k k41 K I k+1

Sk= Za i8ki
i=O

Pirst, we need to compute L as a function of I

LJnSm+n-1
-------------------=A(f)(m+n)Sn_1

where

= (X(c) + SI) /n

Second, we need to compute I as a function of L

L(m+n)Sn- 1  B(
! -- - - - - 8(L)

nSm+n-I

where

(X(c)m /
n + 1  + ( + 1)sL} /m n

n

11



A and B are therefore inverse functions, i.e.,

A(B(x)) = x = B(A(x))

or

A-' = B and B-i = A

Now let values of u denote the original mesh and let g be the piecewise linear

interpolant to the (ui,I fi" 1 ) data.

Define the integral
X

G(x) = f g(tm/ndt

Now if ui < x < ui+j,
ui  ui*x-ui

G(x) = )' g(t)m/ndt + f gi(t)m /ndt
u1 ui

= G(u i ) + L

where X = gi, c = ui, and I = x-u i . Hence,

G(x) = G(u i ) * A(x-ui)

explicitly defines G for all x in the domain of interest.

In order to get the standard mesh, we will also have to compute the inverse

of G (only for m/n = p).

B(G(x) G(ui)) = B(A(x-ui)) = x-u i

Hence,

x = + B(G(x) - G(ui))

but if G(x) = y, then x = G-'(y). Therefore,

G- 1 (y) = u i + 8(7 - G(ui))

for

G(ui) 4 y 4 G(Ui+l)

and provided

G(ui) * G(ui+l)

12



Def ine

I= G(xi41 ) - G(xi) f =~ g(t)Pdt
xi

ere x is the standard or improved mesh, obtained by prescribing values for the

Vs. The standard method prescribes

G (xN)
Ii = const = -:- (1 4 i 4 N)

For the improved mesh, the I's will vary, but the mesh is still obtained in the

standard way. Since

G~i.)= G(xi) + Ii

we have immediately that

xi+i = G'I(G(xi) + Ii) i=1,,-N2

ALGOR ITHM

Let * denote a standard or improved mesh and ** denote the succeeding

improved mesh. We have seen that the main contributor to the ratios

IleI1f,h**/I1eI1fl,h* and I e I n,h**A e I n,h* is

h; f~I

We therefore have the approximate asymptotic relation

e ln~h* Henh*~

But we would like lllInfh** to be constant, hence we have the proportionality

eIn,h*

Nefln,h*

or

=ph* " Ce n,h* )
feinh*

13



We calculate the I's accordingly and multiply them by the appropriate constant

to get
N-i G(XN)

i=l ' -
*ph*

The quantities elln,hi are computed either from the improved asymptotic

approximation or exactly (relative to the original data) depending on whether or

not f" is bounded away from zero on the subinterval in question. It is impor-

tant to note that this approximate relation between the * and ** meshes can lead

to exact convergence (rapidly) to the minimax mesh. If the * mesh is the

minimax mesh (Ielln,h* = constant), then the de Boor integrals (Ip,h) on the -

mesh will be no different from those on the * mesh.

The practical convergence properties of this algorithm are as follows. If

f" is well bounded away from zero, the standard de Boor method gives impeccable

results without any iteration. If f" is not bounded away from zero, convergence

to a virtually perfect minimax mesh can easily occur in only two iterations. A

few iterations may be needed in the presence of multiple inflection points.

In any case, even the very first iteration improves the mesh markedly.

14



REFERENCES

1. C. de Boor, "Good Approximation by Splines With Variable Knots," in:

Spline Functions and Approximation Theory (A. Meir and A. Sharma, eds.),

Birkhauser Verlag, Basel, 1973, pp. 57-72.

2. C. de Boor, "Good Approximation by Splines With Variable Knots, I," in:

Numerical Solution of Differential Equations (G.A. Watson, ed.), Lecture

Notes in Math, No. 363, Springer Verlag, 1974, pp. 12-20.

3. C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978,

15



TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

NO. OF

COPIES

CHIEF, DEVELOPMENT ENGINEERING DIVISION
ATTN: SMCAR-CCB-DA I

-OR-01 1
-DR 1

-OS (SYSTEMS) I

CHIEF, ENGINEERING SUPPORT DIVISION
ATTN: SMCAR-CCB-S I

-SD i
-SE I

CHIEF, RESEARCH DIVISION
ATTN: SMCAR-CCB-R 2

-RA I
-RE 1
-RM 1
-RP I
-RT 1

TECHNICAL LIBRARY 5

ATTN: SMCAR-CCB-TL

TECHNICAL PUBLICATIONS & EDITING SECTION 3
ATTN: SMCAR-CCB-TL

OPERATIONS DIRECTORATE

ATTN: SMCWV-ODP-P

DIRECTOR, PROCUREMENT DIRECTORATE
ATTN: SMCWV-PP

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1
ATTN: SMCWV-QA

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF
ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF NO. OF
COPIES COPIES

ASST SEC OF THE ARMY COMMANDER
RESEARCH AND DEVELOPMENT ROCK ISLAND ARSENAL
ATTN: DEPT FOR SCI AND TECH I ATTN: SMCRI-ENM
THE PENTAGON ROCK ISLAND, IL 61299-5000
WASHINGTON, D.C. 20310-0103

DIRECTOR
ADMINISTRATOR US ARMY INDUSTRIAL BASE ENGR ACTV

DEFENSE TECHNICAL INFO CENTER 12 ATTN: AMXIB-P
ATTN: DTIC-FOAC ROCK ISLAND, IL 61299-7260
CAMERON STATION
ALEXANDRIA, VA 22304-6145 COMMANDER

US ARMY TANK-AUTMV R&D COMMAND
COMMANDER ATTN: AMSTA-DDL (TECH LIB)
US ARMY ARDEC WARREN, MI 48397-5000
ATTN: SMCAR-AEE I

SMCAR-AES. BLDG. 321 1 COMMANDER
SMCAR-AET-O, BLDG. 351N I US MILITARY ACADEMY
SMCAR-CC I ATTN: DEPARTMENT OF MECHANICS
SMCAR-CCP-A I WEST POINT, NY 10996-1792
SMCAR-FSA I
SMCAR-FSM-E I US ARMY MISSILE COMMAND
SMCAR-FSS-D, BLDG. 94 1 REDSTONE SCIENTIFIC INFO CTR 2
SMCAR-IMI-I (STINFO) BLDG. 59 2 ATTN: DOCUMENTS SECT, BLDG. 4484

PICATINNY ARSENAL, NJ 07806-5000 REDSTONE ARSENAL, AL 35898-624,

DIRECTOR COMMANDER
US ARMY BALLISTIC RESEARCH LABORATORY US ARMY FGN SCIENCE AND TECH CTR
ATTN: SLCBR-0D-T, BLDG. 305 1 ATTN: DRXST-SD
ABERDEEN PROVING GROUND, MD 21005-5066 220 7TH STREET, N.E.

CHARLOTTESVILLE, VA 22901
DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS ACTV COMMANDER
ATTN: AMXSY-MP 1 US ARMY LABCOM
ABERDEEN PROVING GROUND, MD 21005-5071 MATERIALS TECHNOLOGY LAB

ATTN: SLCMT-IML (TECH LIB) 2

COMMANDER WATERTOWN, MA 02172-0001
HQ, AMCCOM
ATTN: AMSMC-IMP-L I
ROCK ISLAND, IL 61299-6000

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF NO. OF
COPIES COPIES

COMMANDER COMMANDER
US ARMY LABCOM, ISA AIR FORCE ARMAMENT LABORATORY
ATTN: SLCIS-IM-TL 1 ATTN: AFATL/MN
2800 POWDER MILL ROAD EGLIN AFB, FL 32542-5434
AOELPHI, MD 20783-1145

COMMANDER
COMMANDER AIR FORCE ARMAMENT LABORATORY
US ARMY RESEARCH OFFICE ATTN: AFATL/MNF
ATTN: CHIEF, IPO I EGLIN AFB, FL 32542-5434
P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211 MIACiCINDAS

PURDUE UNIVERSITY
DIRECTOR 2595 YEAGER ROAD
US NAVAL RESEARCH LAB WEST LAFAYETTE, IN 47905
AT7N: MATERIALS SCI & TECH DIVISION 1

CODE 26-27 (DOC LIB) I
WASHINGTON, D.C. 20375

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN: SLCBR-IB-M (DR. BRUCE BURNS) 1
ABERDEEN PROVING GROUND. MD 21005-5066

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.


